Short-Term Forecasting of Water Yield from Forested Catchments after Bushfire: A Case Study from Southeast Australia
نویسندگان
چکیده
Forested catchments in southeast Australia play an important role in supplying water to major cities. Over the past decades, vegetation cover in this area has been affected by major bushfires that in return influence water yield. This study tests methods for forecasting water yield after bushfire, in a forested catchment in southeast Australia. Precipitation and remotely sensed Normalized Difference Vegetation Index (NDVI) were selected as the main predictor variables. Cross-correlation results show that water yield with time lag equal to 1 can be used as an additional predictor variable. Input variables and water yield observations were set based on 16-day time series, from 20 January 2003 to 20 January 2012. Four data-driven models namely Non-Linear Multivariate Regression (NLMR), K-Nearest Neighbor (KNN), non-linear Autoregressive with External Input based Artificial Neural Networks (NARX-ANN), and Symbolic Regression (SR) were employed for this study. Results showed that NARX-ANN outperforms other models across all goodness-of-fit criteria. The Nash-Sutcliffe efficiency (NSE) of 0.90 and correlation coefficient of 0.96 at the training-validation stage, as well as NSE of 0.89 and correlation coefficient of 0.95 at the testing stage, are indicative of potentials of this model for capturing ecological dynamics in predicting catchment hydrology, at an operational level. OPEN ACCESS
منابع مشابه
Physically-Based Prediction of Water Yield from Disturbed Forested Water Supply Catchments
Disturbance of forested catchments by fire, logging, or other natural or human induced events that alter the evapotranspiration regime may be a substantial threat to domestic, environmental and industrial water supplies. While security of water supplies have always been of high importance in Australia, the recent long-lived drought, climate change predictions and two major “mega fire” events in...
متن کاملShort Term Load Forecasting by Using ESN Neural Network Hamedan Province Case Study
Abstract Forecasting electrical energy demand and consumption is one of the important decision-making tools in distributing companies for making contracts scheduling and purchasing electrical energy. This paper studies load consumption modeling in Hamedan city province distribution network by applying ESN neural network. Weather forecasting data such as minimum day temperature, average day temp...
متن کاملShort and Mid-Term Wind Power Plants Forecasting With ANN
In recent years, wind energy has a remarkable growth in the world, but one of the important problems of power generated from wind is its uncertainty and corresponding power. For solving this problem, some approaches have been presented. Recently, the Artificial Neural Networks (ANN) as a heuristic method has more applications for this propose. In this paper, short-term (1 hour) and mid-term (24...
متن کاملShort and Mid-Term Wind Power Plants Forecasting With ANN
In recent years, wind energy has a remarkable growth in the world, but one of the important problems of power generated from wind is its uncertainty and corresponding power. For solving this problem, some approaches have been presented. Recently, the Artificial Neural Networks (ANN) as a heuristic method has more applications for this propose. In this paper, short-term (1 hour) and mid-term (24...
متن کاملP024-1 Development of pollutant build-up parameters for MIKE URBAN for Southeast Queensland, Australia
Accurate estimation of input parameters is essential to ensure the accuracy and reliability of hydrologic and water quality modelling. Calibration is an approach to obtain accurate input parameters for comparing observed and simulated results. However, the calibration approach is limited as it is only applicable to catchments where monitoring data is available. Therefore, methodology to estimat...
متن کامل